New Off-Site Storage Technologies

Jacob Nadal, ReCAP
Jeremy Suratt, Iron Mountain
Technology with a current purpose

- (Almost) everything, available to (almost) everybody, at (pretty much) any time
- And in the best format for their work
- Leading to simpler upstream operations, so the library focuses on core services
Technology for an emerging future

- **Diversity** and **novelty** in user needs
- Diverse **affordances** across **formats** and **research lifecycles**

- Manage complexity off-site at a single site, to create clarity on-site at multiple sites
Technology in a developing context

- Middleware
- Process Changes
 - Intake and Fulfillment channels
 - Internal processing improvement
- Storage Density
Middleware

- **Purpose**: enable sharing
- **Assumption**: more sharing \rightarrow desire for more services \rightarrow requirement for better operations
- **Consequence**: technology for sharing designed as a foundation for services
Middleware

• Enterprise Services Bus (ESB) with connectors:
 • to Integrated Library Systems (ILS)
 • to Inventory Management Systems (IMS)
• Combined Bibliographic Metadata Index
 • incorporated into the discovery layer (no separate union catalog)
• Rules Engine
 • manage policy and procedures, such as loan periods, recalls and holds, data reconciliation
Middleware

- Apache Camel: Service bus
- Drools: rules management
- Apache SOLR: Bibliographic metadata
- NCIP: circulation across platforms
- IMS Proxy Layer with a SOAP API (new)
- All free and open source
 - Development 2016; Testing and deployment through mid-2017; Public release Fall of 2017
- ReCAP is contracting with HTC Global to develop *and maintain* the system through 2020
Process Improvement

• Two processes of direct value to end users:
 • Intake: We expect to keep doing this. A lot.
 • Fulfillment: Move from “print books ASAP” to “right format at the right time”

• Two sub-processes of no direct value:
 • Space allocation: should become dynamic
 • Refiling: should then merge with intake

• Requires “hardware” changes to storage and process, along with new software
Process Improvement

- Two processes of direct value to end users:
 - **Intake:** We expect to keep doing this, a lot.
 - ReCAP Shared is for *ongoing collection* and *perpetual retention* of the printed record
 - **Fulfillment:** From “print books ASAP” to “the preferred format at the right time”
Process Improvement

• Two sub-processes of no direct value:
 • **Space allocation**: should become dynamic
 • **Refiling**: should then merge with intake

• Requires “hardware” changes, to storage and process, along with new software
Who have we consulted?

Consultants

Lizanne Payne
Consultant to libraries, consortia and related organizations including Harvard University, Eastern Academic Scholars Trust, Western Regional Storage Trust and Statewide California Electronic Library Consortium. Former Executive Director, Washington Research Library Consortium and Manager, OCLC.

Matthew Sheehy
University Librarian for Collections at Brandeis University, former Assistant Director of the University Library for the Harvard Depository. Independent consultant.

Boston advisory
Feb 26, 2015

West Coast advisory
April 30, 2015

Other contacts

European contacts

All plans subject to change.
Preservation Service: New ASRS Storage System

Traditional Harvard-Style
- 27% storage density
- Wet pipe, in rack – risk of water damage from leaks
- 60F/40% RH
- No utilities on roof

New Iron Mountain ASRS
- >60% storage density
- Low oxygen fire suppression – eliminates water risk
- 60F/40% RH with ability to create micro-climates
- No utilities on roof
- No lights in vault (increased PI/low energy)
- Robots work 24/7 at a lower cost than people
- Decreased potential for misfiling

Lower cost, greater preservation index and less risk of water damage

All plans subject to change.
IM ASRS Storage Module

Steel construction

Vertical separators will be placed on shelves to create segments, which will be used to ensure customers content is stored separately

Two deep

Shelves on both sides

Uniform size with 4 different shelf configurations to optimize book density within storage module

Separate unit with the same external dimensions designed to store boxes stacked 1 high

MIN 19,2 Linear Meters and MAX. 28,8 Linear Meters
MAX. 2,000 KG
(INCLUDING SHELF)

70.5 CUFT
Iron Mountain Draft Simulation

http://bit.ly/1MxCPWu

All plans subject to change.
Failed Pilot - Lessons Learned

- The need and willingness exists
- Business speed vs. library speed
- Long and challenging political process to gain alignment within the institution
Wrap-up

• Near-term improvements:
 – Easier sharing among consortia members
 – Better collection analysis

• Medium-term improvements
 – More fulfillment options (choice of format and delivery date)
 – Better storage efficiencies
THANK YOU!

Jacob Nadal: jnadal@princeton.edu
Jeremy Suratt: jeremy.suratt@ironmountain.com