

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 1 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

RECAP PROJECT
HIGH LEVEL ARCHITECTURE

1.0

Authors

LAKSHMI NARASIMHAN

&

VIJAYKUMAR GUNDAVARAPU
HTC Global Services, Inc.

+1 248 786 2500
lakshmi.narasimhan@htcinc.com

vijaykumar.gundavarapu@htcinc.com

Sponsor

RECAP
New York Public Library

mailto:lakshmi.narasimhan@htcinc.com
dwong
Placed Image

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 2 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Notice of Proprietary Information

All information contained in or disclosed by this document is confidential and proprietary
to ReCAP.

By accepting this material the recipient agrees that this material and the information
contained therein will be held in confidence and will not be reproduced in whole or in part

without express written permission.

Distribution: Restricted

Disposal: Shred

File Name: ReCAP High Level Architecture

Copyright 2013 ReCAP

Revision History

Version Date Author Description Status

Draft 05/16/2013 Lakshmi
Narasimhan &
Vijaykumar
Gundavarapu

Initial Version – Draft In Progress

1.0 5/30/2013 Lakshmi
Narasimhan &
Vijaykumar
Gundavarapu

Review comments incorporated Complete

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 3 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Table of Contents
1. INTRODUCTION ... 5

1.1 PURPOSE ... 5
1.2 DOCUMENT OVERVIEW .. 5
1.3 AUDIENCE .. 5
1.4 DEFINITION FOR ARCHITECTURE .. 6
1.5 SCOPE ... 6

2. PROJECT GOALS .. 6

2.1 PROJECT SCOPE AND OBJECTIVES ... 6
2.2 ARCHITECTURAL CHALLENGES WITH CURRENT SYSTEM .. 7
2.3 HOW THE NEW ARCHITECTURE ADDRESSES THE CHALLENGES ... 7

3. ARCHITECTURAL OVERVIEW .. 8

3.1 CANDIDATE ARCHITECTURE... 8
3.1.1 Layers .. 8

3.1.1.1 Presentation Layer .. 8
3.1.1.2 Enterprise Services Layer .. 8
3.1.1.3 Data Services Layer ... 9
3.1.1.4 Data Layer .. 9

3.2 RATIONALE .. 10
3.2.1 Rationale for using ReCAP Middleware database vs. ILS Transfer .. 10
3.2.2 Rationale for using Kuali RICE vs. other commercial/open source frameworks 10

4. ARCHITECTURAL VIEWS ... 12

4.1 USE-CASE VIEW ... 12
4.1.1 Search Shared Collection Items ... 13

4.1.1.1 Architectural Significance .. 13
4.1.2 Request Item... 14

4.1.2.1 Architectural Significance .. 14
4.1.3 Validate Request .. 14

4.1.3.1 Architectural Significance .. 14
4.1.4 Place Hold on Item .. 14

4.1.4.1 Architectural Significance .. 14
4.1.5 Recall Item ... 14

4.1.5.1 Architectural Significance .. 14
4.1.6 Accession Item ... 14

4.1.6.1 Architectural Significance .. 15
4.1.7 DeAccession Item ... 15

4.1.7.1 Architectural Significance .. 15
4.1.8 Process Borrow Direct Request ... 15

4.1.8.1 Architectural Significance .. 15
4.1.9 Re-file Item... 15

4.1.9.1 Architectural Significance .. 15
4.1.10 Check Item Availability .. 16

4.1.10.1 Architectural Significance ... 16
4.1.11 Get Shared Collection Records .. 16

4.1.11.1 Architectural Significance ... 16
4.1.12 Submit Collection Information ... 16

4.1.12.1 Architectural Significance ... 16

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 4 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.1.13 Receive Collection Updates ... 16
4.1.13.1 Architectural Significance ... 16

4.2 LOGICAL VIEW ... 16
4.2.1 Analysis Model ... 17

4.2.1.1 Overview .. 17
4.2.1.2 Analysis Packages .. 17
4.2.1.3 Key Analysis Classes ... 18
4.2.1.4 Boundary Classes ... 18
4.2.1.5 Control Classes .. 18
4.2.1.6 Entity Classes ... 18

4.2.2 Design Model ... 19
4.2.2.1 Architecturally Significant Design Packages ... 19

4.2.3 Frameworks, Patterns and Guidelines... 21
4.2.3.1 Common Patterns ... 21
4.2.3.2 Model-View-Controller (MVC) Pattern ... 21
4.2.3.3 Façade Pattern .. 22
4.2.3.4 Business Delegate Pattern .. 23
4.2.3.5 Factory Pattern ... 23
4.2.3.6 Singleton Pattern .. 24
4.2.3.7 Chain of Responsibility Pattern .. 24
4.2.3.8 Value Object or Transfer Object Pattern .. 25
4.2.3.9 Service Locator .. 25
4.2.3.10 Data Access Object .. 26
4.2.3.11 Inversion of Control (Spring Framework) ... 26

4.3 PROCESS VIEW ... 27
4.4 DEPLOYMENT VIEW ... 28

4.4.1 Amazon Cloud Configuration (Production Instance) .. 29
4.4.2 Amazon Cloud Configuration (QA & Development Instance) .. 29

4.5 IMPLEMENTATION VIEW ... 30
4.5.1 Layers .. 30
4.5.2 Error handling ... 31

4.6 DATA VIEW .. 33

5. SIZE AND PERFORMANCE ... 35

5.1 SCALABILITY .. 35
5.2 PERFORMANCE ... 36

6. PROPOSED DEVELOPMENT ENVIRONMENT .. 37

6.1 HARDWARE .. 37
6.2 SOFTWARE.. 37

7. PROTOTYPE/PROOF-OF-CONCEPTS ... 39

8. QUALITY ... 39

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 5 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

1. Introduction

1.1 Purpose

Architecture represents the significant design decisions that shape a system, where significance
is measured by cost of change. This document proposes high-level candidate architecture for the
ReCAP middleware system. The architecture is described using a number of different views to
depict architecturally-significant aspects of the system. It is intended to capture and convey the
significant architectural decisions, which have been made on the system.

This version of the document presents high-level aspects of the system and the candidate
architecture. As the project evolves through the development life cycle, this document will be
updated to reflect the architectural decisions/design for the following (but not limited to):

 Finalized Data View

 Finalized Implementation View

 Finalized Deployment View

1.2 Document Overview

The architecture of the application is represented using the recommendations of the Rational
Unified Process guidelines. This document also highlights the development environment, quality
requirements and prototyping details.

The UML (Unified Modeling Language) specification of the new ReCAP middleware system has
been divided into six views (Rational’s 4+1 model):

 Use Case View –illustrates and validates the architecture by presenting selected
architecturally significant use cases.

 Logical View – illustrates the object model of the design. It presents an analysis model,
which captures the analysis of the use cases and a design model. This view also describes
the logical structure of the system and presents key structural and behavioral elements.

 Process View – illustrates the assignment of components to the operating system processes
and threads.

 Implementation View - describes the physical organization of the software and its
components in the production environment.

 Deployment View –illustrates the mapping of the software to the hardware and its
distribution aspects.

1.3 Audience

The primary audience for this document is the Development team and QA team. The
development team will use it to help aid the detailed design during the development phase and
ultimately to develop the system. The QA team will use it to ensure testability and also to ensure
that proper test cases are written.

Each view as presented in the “Document Overview” section primarily caters to different

audience.
 Use-case view – All
 Logical view – Development team
 Process view – Software Integrators (part of the development team), QA team to understand

performance and scalability bottlenecks for testing purposes
 Implementation view – Development and Deployment teams(part of development team)

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 6 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

 Deployment view – Deployment and Production Support teams

1.4 Definition for Architecture

The Unified Software Development Process [8] defines “Software Architecture” as

“We can think of the architecture of a system as the common vision that all the workers (i.e.,
developers and other stakeholders) must agree on or at least accept. The architecture gives us a
clear perspective of the whole system, which is necessary to control its development. ”

This document uses the architecture definitions presented by Software Architecture in Practice
and the UML Modeling Language Guide: Software Architecture in Practice [7] defines “Software

Architecture” as:

“The software architecture of a program or computing system is the structure or structures of the
system, which comprise software components, the externally visible properties of those
components, and the relationships among them.”

UML Modeling language user guide [6] defines “Software Architecture” as:

“An architecture is the set of significant decisions about the organization of a software system, the
selection of the structural elements and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations among those elements, the
composition of these structural and behavioral elements into progressively larger subsystems,
and the architectural style that guides this organization---these elements and their interfaces, their
collaborations, and their composition. ”

1.5 Scope

This document provides the candidate architecture for the ReCAP middleware system, which
includes details for each layer (Presentation, Enterprise Services, Data Services, and Data) and
the interfaces to ILS, OPAC and GFA LAS systems.

2. Project Goals

This section provides the business needs, project goals and architectural issues with the current
system and explains how the new ReCAP middleware system architecture aims to address these
issues. This section provides a business perspective to the architecture and establishes
architectural goals, assumptions and constraints.

2.1 Project scope and objectives

“The scope of the project is to expand the vision of the ReCAP facility from a shared storage

facility to a shared collection with enhanced access to the patrons of each of the participating

libraries by implementing an integrated ReCAP middleware system utilizing established industry

architectures. The functional requirements for ReCAP middleware will encompass all of the

existing functionality, plus changes and enhancements to improve user experience and collection

management”.

The ReCAP project has the following main objectives:
1. Improve visibility of ReCAP shared collection items from any participating institution in

existing OPAC systems
2. Display of real-time status of items in ReCAP, including availability for request, restrictions

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 7 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

and available pick-up locations
3. Improve services that can be embedded into the online catalog or discovery services of the

participating institutions to capture and validate requests made by patrons or by library staff
for ReCAP materials

4. Provide real-time tracking for ReCAP materials requested by patrons from the time that they
leave the ReCAP until they are returned for refilling

5. Provide tools to support the management of the ReCAP collection, such as collaborative
collection development, automated processing of duplicates, or designation of preservation
retention.

2.2 Architectural Challenges with current system

1. Shared Collection Visibility – Items placed in shared collection by other partners is not
available in the OPAC systems, limiting access of such items to patrons

2. Real-time Availability – ReCAP item status is unavailable in OPAC or ILS
3. Real-time Request Processing – Request processing is batch only with minimal validations

and error reporting
4. Real-time Status Reporting – Overall status of items between ReCAP facility and delivery

locations are partially captured and distributed across disparate systems
5. Collection Management – No centralized collection management is in place

2.3 How the new Architecture addresses the challenges

1. Shared Collection Visibility – ReCAP middleware consolidates and normalizes ReCAP item
and bib records from all three partners and provides nightly feeds to all partner OPAC
systems. ReCAP search service provides ability to perform federated search on shared
collection from OPAC.

2. Real-time Availability – ReCAP middleware database maintains real-time status of all ReCAP
items. Item availability is provided through ReCAP middleware API.

3. Real-time Request Processing – ReCAP middleware maintains validation rules and item
status. Request submitted through OPAC forms are validated real-time, processed and
recorded in ReCAP middleware database. Users receive confirmation or validation error
messages in real-time enabling them to resubmit a valid request.

4. Real-time Status Reporting – ReCAP middleware consolidates a complete view of item status
across GFA and ILS systems into middleware database. Consolidated status can be
leveraged for tracking and analytics.

5. Collection Management – ReCAP middleware implements centralized automated collection
classification algorithm. Middleware provides user interfaces for manual workflow steps such
as withdrawal of preservation copies.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 8 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

3. Architectural Overview

3.1 Candidate Architecture

Figure 1- Candidate Architecture

3.1.1 Layers

The architecture includes four distinct layers:
 Presentation Layer
 Enterprise Services Layer
 Data Services Layer
 Data Layer

3.1.1.1 Presentation Layer

The presentation layer deals with user interface aspects of the system. Presentation layer will leverage
Kuali Rapid Application Development (KRAD), a framework providing reusable solutions and templates.
KRAD is built upon industry standard jQuery libraries providing out-of-box UI components, validations and
accessibility to RICE middleware.

3.1.1.2 Enterprise Services Layer

The enterprise services layer encapsulates specific business rules, which are made available to the
presentation layer. The presentation layer requests enterprise services, which are then fulfilled by this

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 9 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

layer. The architecture envisages providing a seamless enterprise service layer communicating with
internal data stores and 3rd party services. The data access layer supports the enterprise service layer
by serving the data required.

Enterprise Services is based on a Service Oriented Architecture and leverages Kuali Service Bus (KSB),
for service integration. Services will be designed as java spring-based services and will be published on
the service bus as remote asynchronous calls. Transaction services will be published as SOAP services
and lookup services will be published as RESTFul Services.

Features such as Service Discovery, Quality of Service, Security, Monitoring and Messaging are available
as out-of-box features in Kuali Service Bus and can be leveraged during implementation as required.

3.1.1.3 Data Services Layer

The data services layer provides fundamental services to fulfill the business needs (fulfilled through
enterprise services) such as Search, Request Item, etc. The data services layer serves data required by
enterprise services. Data services support both relational database and Solr.

Services implementing data access to relational database will leverage Java Persistence Architecture
(JPA), providing separation of object persistence and data access logic from a particular persistence
mechanism (relational database) in data layer. This approach provides the flexibility to change the
applications persistence mechanism without the need to re-engineer application logic that interacts with
the data layer. Persistence classes are developed following the object-oriented idiom including
association, inheritance, polymorphism, composition, and collections. This framework provides the
flexibility to express queries in its own portable SQL extension, as well as in native SQL, or with object-
oriented criteria.

Services implementing data access to Solr / Lucene search will wrap the Solr RESTFul API’s to provide
features such as search, filter, sort and navigation.

3.1.1.4 Data Layer

The data layer serves as the data store for all persistent information in the system including the relational
database and search engine indexes.

RDBMS data layer will comprise of MySQL cluster. RDBMS data layer will be accessed only from the
data access layer via Data Access Objects (DAOs). RDBMS cluster architecture allows a single physical
database to be accessed by concurrent instances running across several different CPUs. The proposed
data layer will be composed of a group of independent servers or nodes that operate as a single system.
These nodes have a single view of the distributed cache memory for the entire database system
providing applications access to more horsepower when needed while allowing computing resources to
be used for other applications when database resources are not as heavily required. In the event of a
sudden increase in traffic, proposed system can distribute the load over many nodes, a feature referred to
as load balancing. In addition to this, proposed system can protect against failures caused by unexpected
hardware, operating system or server crashes, as well as processing loss caused by planned
maintenance. When a node failure occurs, connection attempts can fail over to other nodes in the cluster,
which assumes the work of the failed node. When connection failover occurs and a service connection is
redirected to another node, users can continue to access the service, unaware that it is now provided
from a different node.

A single Solr instance can support more than one index using Solr cores (single index per core). A single
large index can be a performance overhead. SolrCloud distributes a single index on different machines,

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 10 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

commonly referred as shards. All shards of the same index making one large index are referred as
collection. While collection supports index scaling, it does not provide redundancy. Replication of shards
provides redundancy and fault tolerance.

Zookeeper maintains the SolrCloud, by distributing the index across shards and federating the search
through the collection. SolrCloud uses leaders and an overseer. In the event of leader or the cluster
overseer failure, automatic fail over will choose new leaders or a new overseer transparently to the user
and they will seamlessly takeover their respective jobs. Any Solr instance can be promoted to one of
these roles.

3.2 Rationale

3.2.1 Rationale for using ReCAP Middleware database vs. ILS Transfer

Cross loading MARC records representing holdings of other ReCAP institutions into each ILS was
considered as a design alternative. This option would have introduced significant costs and support
burdens for partners. In some cases current ILS systems capacity or license thresholds would be
exceeded. All three partners are planning to replace their current ILS systems in near future. This option
would have incremented the data migration effort from existing ILS to the new ILS.

Loading ReCAP bibliographic and item records in middleware database provides a centralized repository
for shared collection without impacting the ILS systems at partner institutions. Middleware database is
needed to store the entire item and bib records of all there partner’s private and shared collections. Also it
is needed to record all the incoming requests from patrons and to maintain the transactions. Hence
.middleware database is required irrespective of the decision to synchronize bibliographic and item
records. This option comes at a marginal increase to the implementation and ongoing maintenance costs.

Hence the approach of loading shared bibliographic and item records to ReCAP middleware database is
recommended over cross loading MARC records to partner ILS.

3.2.2 Rationale for using Kuali RICE vs. other commercial/open source frameworks

Major components required to support the architecture includes Service Bus, Rules Engine, Workflow
Engine, Authentication and Authorization and User Interface/Experience framework.

While several open source projects such as JBoss, Spring, and JQuery presented compelling
components, these components have to be integrated by the project team to provide a seamless platform
for ReCAP middleware.

Kuali RICE framework presents the benefits of open source such as no license costs and vendor
dependencies. The framework leverages several industry standard frameworks such as Spring, JQuery,
etc. and provides an enterprise grade end-to-end integrated framework well suited for ReCAP middleware
development.

Rice is built on a Service Oriented Architecture (SOA) providing common enterprise workflow
functionality, customizable and configurable user interfaces with a clean and universal look and feel, and
general notification features to allow for a consolidated list of work "action items." Additionally, there are a
set of services in Rice that provide identity and access management capabilities and can be used to
abstract away from underlying institution-specific identity services. All of this adds up to a re-usable
development framework that encourages a simplified approach to developing true business functionality
as modular applications.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 11 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Kuali Service Bus (KSB) provides service management and routing functionalities. Workflow and
Messaging domain is taken care by Kuali Enterprise Workflow (KEW) and Kuali Enterprise Notification
(KEN). Kuali Identity Management (KIM) provides services for authentication and authorization
management. Also it has Kuali Rules Management (KRM) for business rule development and execution
as well as information delivery and analysis.

Kuali foundations commitment to provide and support enterprise scale framework for the higher education
and academic library community makes Kuali RICE a compelling choice for this project.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 12 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4. Architectural Views

4.1 Use-Case View

The Architecturally significant Use Cases identified during the High Level Architecture definition
are listed below. The diagram provides the model for architecturally significant use cases.

Figure 2 – Architecturally Significant Use-Case View

 ud ReCAP_Usecase

Patron

Library Staff

OPAC

ReCAP Staff

Request Item

Validate Request

Place Hold on Item

Recall Item

Refile Item

Process Borrow

Direct Request

Accession Item

Deaccession Item

Get Shared

Collection Records

Check Item

Av ailability

Search Shared

Collection Items

Submit Collection

Information

Receiv e

Collection Updates

ILS

«include»

«include»

«include»

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 13 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

The following table lists the actors (user or system) interacting with the system.

No. Actor Description

1 Patron A library patron is someone who uses a library, a university student or a
city resident. Typically, this person gets a library card, browses the
available books, CDs, DVDs, etc.

2 Library Staff A library employee, who is responsible for a collection of specialized or
technical information about items and management of items in a library.

3 ReCAP Staff A Person responsible for day to day activities at GFA facility including
accessioning, deaccessioning, filing, re-filing, etc.

4 OPAC An Online Public Access Catalog (often abbreviated as OPAC or simply
Library Catalog) is an online database of materials held by a library
Example: Bibliocommons, CLIO.

5

ILS An integrated Library System (ILS) is an enterprise resource planning
system for a library, used to track items owned, orders made, bills paid,
and patrons who have borrowed.
Example: Millennium ,Voyager

The following lists the architecturally significant Use Cases.

No. Use Case Name Architecture Complexity

1 Search Shared Collection Items Complex
2 Request Item Complex
3 Validate Request Simple
4 Place Hold on Item Complex
5 Recall Item Complex
6 Accession Item Medium
7 Deaccession Item Medium
8 Process Borrow Direct Request Complex
9 Re-file Item Complex
10 Check Item Availability Complex
11 Get Shared Collection Records Medium
12 Submit Collection Information Medium
13 Receive Collection Updates Medium

A brief description of the architecturally significant use cases has been listed below. Each of the
use case description includes key business rules and includes reasons for architectural
significance.

4.1.1 Search Shared Collection Items

In this use-case the patron will search the OPAC for institution items as well as shared collection items
placed by other ReCAP partners. Search for an item in OPAC will initiate search to OPAC’s index and
ReCAP index. The two search results will be merged to include shared collection items in the search
results.

4.1.1.1 Architectural Significance

 Core Functionality
 Complexities –Includes collecting bibliographic and item data from all three partners,

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 14 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

normalizing and indexing the data and providing offline feed or API for OPAC systems.

4.1.2 Request Item

In this use-case a patron will request a ReCAP item by submitting the request through a web form. The
form will submit the request to middleware API, which will invoke other use-cases to process the request.

4.1.2.1 Architectural Significance

 Core Functionality
 Complexities – ReCAP middleware will interact with GFA LAS, ILS and OPAC to process the

request. It will create a temporary item record in one of the three applicable ILS depending
upon the patron.

4.1.3 Validate Request

Request item use-case will invoke this use-case to validate the request for requested item, delivery
location, delivery type, etc. Upon successful validation control will be returned to the main use-case with a
confirmation message and upon unsuccessful validation an error message will be returned.

4.1.3.1 Architectural Significance

 Core Functionality
 Complexities – ReCAP middleware will validate against ReCAP circulation policies and item

availability in the middleware database.

4.1.4 Place Hold on Item

In this use-case a patron will place hold against an item whose status is currently unavailable.

4.1.4.1 Architectural Significance

 Core Functionality
 Complexities – ReCAP middleware will maintain a single hold queue for all the partner

institutions in a first-in, first-out basis. The hold queue will be automatically propagated to all
applicable ILS systems.

4.1.5 Recall Item

In this use-case a patron/library staff will recall an item whose status is currently unavailable.

4.1.5.1 Architectural Significance

 Core Functionality
 Complexities – ReCAP middleware will interact with owning or borrowing institution ILS to

send the Recall request and maintain the queue in middleware database.

4.1.6 Accession Item

In this use-case Library Staff will upload bib and item records for new ReCAP items. ReCAP middleware
will interface with GFA LAS to check the accessioned item status and then apply accessioning algorithm.
Applying accessioning algorithm will result in one of the following three scenarios. A valid collection code
will be assigned after which the item will be a shared collection item. It might also result in duplicates in

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 15 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

which case, the items might be placed under institutional access instead of shared access. Detecting
duplicates might also result in libraries withdrawing their items. So the proposed accessions are the items
which are sent by Library staff for accessioning and actual accessions are the items which are assigned
collection code after running the accessioning algorithm. Item information with assigned collection codes
will be returned back to the owning libraries through SFTP drop. ReCAP staff also participates in the
accessioning of an item

4.1.6.1 Architectural Significance

 Core Functionality
 Complexities – Accessioning algorithm will be run every time an item is accessioned in

ReCAP. Accessioning algorithm includes a tie-breaker to cover most of the scenarios. Match
and normalize disparate bib and item data across three partner ILS and GFA LAS. The item
barcodes and applied circulation codes data will be returned to owning partner ILS.

4.1.7 DeAccession Item

In this use case Library Staff will initiate a request to deaccession an item through staff interfaces.
Based on the collection code a manual approval workflow will be triggered to deaccession the
item. ReCAP staff also participates in the deaccessioning of an item

4.1.7.1 Architectural Significance

 Core Functionality
 Complexities – ReCAP middleware will run accessioning algorithm to reassign circulation

codes for other items after deaccessioning an item. A review/approval workflow will be
implemented to manage preservation collections.

4.1.8 Process Borrow Direct Request

This use-case will be invoked by ReCAP staff to process a Borrow direct request. The staff will scan the
barcode in the Borrow direct request or enter one if barcode not available. Upon matching the barcode
the staff can invoke the request item use case by clicking the confirmation button.

4.1.8.1 Architectural Significance

 Core Functionality
 Complexities – ReCAP middleware will provide a thick client interface for barcode scanning

to the ReCAP staff. The solution will maintain existing workflow for ReCAP staff and integrate
the solution to middleware.

4.1.9 Re-file Item

In this use-case middleware will poll GFA LAS for re-filed items periodically, if an item is re-filed and has
no hold or recall queue against it, its status will be changed to available. If a hold/recall queue exists the
item will be processed for the first patron in the queue.

4.1.9.1 Architectural Significance

 Core Functionality
 Complexities – ReCAP middleware will actively poll GFA LAS to get the current status of the

item. Once the item is checked-in (GFA), ReCAP middleware will process the item for next
patron in queue and update corresponding ILS system.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 16 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.1.10 Check Item Availability

In this use-case OPAC will request for a real-time availability status of an item from ReCAP middleware.
Middleware API will return the status from the index which is maintained in sync with the transaction
database.

4.1.10.1 Architectural Significance

 Core Functionality
 Complexities – Real-time Item status will be provided through search API which is maintained

in sync with the ReCAP database. Update search engine index without performance
degradation.

4.1.11 Get Shared Collection Records

In this use-case OPAC systems will retrieve the other partner’s shared collection records from SFTP

server. The bib and item record will be normalized during inbound process and will be de-normalized
during the outbound process to fit each partner’s needs. The outbound records will be limited to other
institution’s shared collection items.

4.1.11.1 Architectural Significance

 Core Functionality
 Complexities –De-normalizing feeds for five OPAC systems.

4.1.12 Submit Collection Information

In this use-case partner ILS system will provide collection information, new accessioned and updates to
bibliographic data through SFTP upload. Middleware will process data from all partners, normalize the
data and ingest into middleware database. The normalized data will be updated to ReCAP index.

4.1.12.1 Architectural Significance

 Core Functionality
 Complexities – – Normalizing bib and item data from three ILS systems and de-normalizing

feeds for five OPAC systems

4.1.13 Receive Collection Updates

In this use-case the ILS systems will retrieve collection updates from ReCAP middleware through SFTP
drops. ReCAP middleware will de-normalize the data sets and provide updated collection information of
item records pertinent to requesting institution only.

4.1.13.1 Architectural Significance

 Core Functionality
 Complexities – Identifying the collection update and provide offline export of owning library

items only.

4.2 Logical View

The Logical View consists of two models: Analysis model and Design Model.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 17 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.2.1 Analysis Model

4.2.1.1 Overview

The Analysis Model provides a view of the requirements from the system’s perspective. The

requirements are refined, structured and the resulting elements are organized into logical groups
of similar functionality called analysis packages.

The analysis model contains View-of-participating-classes (VOPC) which map out control, entity
and boundary classes.

4.2.1.2 Analysis Packages

The Analysis Model contains the following main packages. The following diagram shows the
overall package structure and dependencies:

Figure 3 - Analysis Model Packages - Top Level Dependencies

Package Name Package Description

Data Aggregation This package contains classes which are responsible for consolidating
and normalizing bib and item data from all three partner feeds.

Data Distribution This package contains classes responsible for de-normalizing data from
ReCAP middleware database and then distributes shared collection
data to all 3 partners through SFTP uploads.

Search & Discover This package contains classes which handle all the search requests
from OPAC systems.

Validate Request This package contains classes which are responsible for validating any
incoming request.

Request Item This package contains classes responsible for processing a ReCAP
request.

Hold Item This package contains classes responsible for processing and
maintaining hold queue.

 pd Logical Model

Data Aggregation

Data Distribution

Search and Discov er

Validate Request

Request Item Hold Item

Recall Item

Accession Item

Deaccession Item

Reports

RDBMS

Search

System

«extend»

«extend»

«extend»

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 18 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Recall Item This package contains classes responsible for processing a recall
request.

Accession Item This package contains classes responsible for accessioning new items
DeAccession Item This package contains classes responsible for Deaccessioning existing

items
Reports This package contains classes responsible for generating reports for

Library staff.

4.2.1.3 Key Analysis Classes

Significant analysis classes are described below.

4.2.1.4 Boundary Classes

Boundary classes represent the interface between the system and the actors.
Class Name Class Description

GFA Client A class responsible for invoking SOAP service to interact with GFA LAS
for item status.

NCIP Client A class responsible for invoking NCIP responders to update/create item
details.

Search Service A class publishing Services related to bib and item records and its real
time status.

Barcode Client A class responsible for handling events related to barcode scanning
(Borrow Direct requests)

4.2.1.5 Control Classes

Control classes represent classes that co-ordinate flow between the entities and the boundary
classes.
Class Name Class Description

Authentication
Controller

Controller Class which handles all the incoming requests for
authentication.

Search Controller Controller Class which handles all the search requests for shared
collection items.

Request Controller Controller Class which handles all the transactions for item requests.
Workflow Controller Controller Class which handles all the workflow requests such as

Accessioning and Deaccessioning items.
Report Controller Controller class which handles all the report requests.

4.2.1.6 Entity Classes

Entity classes represent information and associated behavior that must be stored. They are
usually persistent.

 Important entity classes are listed below:

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 19 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Class Name Class Description

Bib A bibliographic record is an entry being a uniform representation and
description of a specific content item in a bibliographic database (or a
library catalog), containing data elements required for its identification
and retrieval, as well as additional supporting information, presented in
a formalized bibliographic format

Item An item record represents a physical piece in the library.
Request Entity that contains all the details for every single request received by

ReCAP middleware

4.2.2 Design Model

4.2.2.1 Architecturally Significant Design Packages

The application has been partitioned into four layers:

 Presentation Layer
 Enterprise Services Layer
 Data Services Layer
 Data Layer

The presentation layer deals with presentation aspects of the system. The enterprise service
layer isolates business rules and the data service layer from the presentation layer. The
enterprise service layer implements common services such as “Search”, “Retrieve” etc. The Data

Service Layer deals with data.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 20 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Figure 4 - Package Hierarchy

The presentation layer has been further sub-divided into “System” and “Report” packages. The

System package contains the system administration specific implementation of the interfaces.
The report package contains the report specific components.

 pd Package

Enterprise Service Layer

Data Service Layer

Presentation Layer

ReportSystem

Search and Discov er Request Item

Hold Item

Recall Item

Accession Item Deaccession Item

RDBMS Search

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 21 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Enterprise Services Layer:

The enterprise services layer contains the “Service” components. The layer uses the “delegate”

pattern to delegate to the appropriate architecture (RDBMS or Solr). The underlying services are
accessed via a “Façade” bean. Any bean that acts as a façade would contain a delegate class

within its package.

The following are sample list of packages that exist within this layer:

Search & Discover – This package contains classes which handle all the search requests from
OPAC systems.

Request Item – This package contains classes handling all the logic to process a ReCAP request.

Hold Item – This package contains classes responsible for processing and maintaining hold
queue

Recall Item – This package contains classes responsible for processing a recall request.

Accession Item - This package contains classes responsible for accessioning new items
DeAccession Item – This package contains classes responsible for Deaccessioning existing
items.

Data service layer contains RDMBS and Search Packages. RDBMS package consists of all
classes which interact with the relational database and Search Packages consists of classes
which interact with SOLR.

4.2.3 Frameworks, Patterns and Guidelines

Application frameworks are a promising technology for reifying proven software designs and
implementations in order to reduce the cost and improve the quality of software.

A framework is a reusable, ``semi-complete'' application that can be specialized to produce
custom applications. In contrast to earlier OO reuse techniques based on class libraries,
frameworks are targeted for particular business units (such as data processing) and application
domains (such as user interfaces)

4.2.3.1 Common Patterns

All the diagrams presented in this section are copyright of their respective creators and ReCAP
project will use most it not all the below patterns during its implementation.

4.2.3.2 Model-View-Controller (MVC) Pattern

The proposed ReCAP architecture will use MVC model for its core framework. The diagram
below (courtesy Sun Microsystems) explains the concepts behind MVC:

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 22 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

 Model: The model represents enterprise data and the business rules that govern access to
and updates of this data. Often the model serves as a software approximation to a real-world
process, so simple real-world modeling techniques apply when defining the model

 View: The view renders the contents of a model. It accesses enterprise data through the
model and specifies how that data should be presented. It is the view's responsibility to
maintain consistency in its presentation when the model changes. This can be achieved by
using a push model, where the view registers itself with the model for change notifications, or
a pull model, where the view is responsible for calling the model when it needs to retrieve the
most current data

 Controller: The controller translates interactions with the view into actions to be performed
by the model. In a stand-alone GUI client, user interactions could be button clicks or menu
selections, whereas in a Web application, they appear as GET and POST HTTP requests.
The actions performed by the model include activating business processes or changing the
state of the model. Based on the user interactions and the outcome of the model actions, the
controller responds by selecting an appropriate view.

4.2.3.3 Façade Pattern

The façade pattern is used in the design at many points. Most significant use is via the Service
Implementations, where a Service Implementation Class (business service implementation) acts
as a façade to the business layer (hiding the business layer complexities) and also provides a
simpler interface for the clients to work with.

The diagram below highlights the details of Façade Pattern:

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 23 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

The intent of this pattern is to hide complex underlying structural details with a simpler interface
providing following benefits.
 Provides a simpler interface for the clients to work with
 Reduces number of objects that the client needs to work with
 Promotes weak coupling

4.2.3.4 Business Delegate Pattern

The Business Delegate pattern can be used to reduce coupling between presentation-tier clients
and business services. The Business Delegate hides the underlying implementation details of the
business service, such as lookup and access details of the business tier components. The lookup
service could be implemented using the “Service Locator” pattern.

It is normally implemented by defining a business interface, which is implemented by a delegate
class and the business component (if the component is being created afresh. If not, then the
delegate acts as a façade).

The diagram below illustrates this pattern:

This model will be used wherever multiple implementations are possible for an interface.

4.2.3.5 Factory Pattern

Factory Method is a pattern used for object creation. This pattern helps model an interface for
creating an object, which at creation time can let its sub-classes, decide the class to be
instantiated. This is called a Factory Pattern since it is responsible for "Manufacturing" an Object.
The Factory Pattern promotes loose coupling by eliminating the need to bind application-specific
classes into the code.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 24 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

The application layer framework will use this pattern to manage the ingestion factory.

4.2.3.6 Singleton Pattern

Singleton pattern is used to ensure a class has only one instance, and provide a global point of
access to it. It also encapsulates “just-in-time initialization” or “initialization on first use”.
The application framework will use this pattern to initialize single instances of all configuration
properties.

4.2.3.7 Chain of Responsibility Pattern

Chain of Responsibility pattern is used to avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request. This is achieved by chaining the
receiving objects and passing the request along the chain until an object handles it. Each object
in chain launches and leaves requests with a single processing pipeline that contains many
possible handlers thus creating an object-oriented linked list with recursive traversal.

The application framework will use this pattern to manage several independent steps of output
creation.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 25 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.2.3.8 Value Object or Transfer Object Pattern

In typical applications there is a need to get several properties or exchange business data
between tiers. This exchange requires multiple round trips over a network and could result in poor
performance. To improve the performance the business data could be encapsulated into a
“Value” or “Transfer” object and passed to the service. Similarly the service could return a “Value”

object, rather than having the client make several “get” calls. Typically value objects have a VO

suffix.

The application framework will use this pattern to exchange data across tiers. The following
diagram illustrates this pattern:

4.2.3.9 Service Locator

Service locator pattern is used to abstract the complexities of initializing all services. Multiple
clients can reuse the Service Locator object to reduce code complexity, provide a single point of
control, and improve performance by providing a caching facility.
This pattern reduces the client complexity that results from the client's dependency on and need
to perform lookup and creation processes, which are resource-intensive. To eliminate these
problems, this pattern provides a mechanism to abstract all dependencies and network details
into the Service Locator.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 26 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.2.3.10 Data Access Object

Data Access Object (DAO) pattern is used to abstract and encapsulate all access to the data
source. The DAO manages the connection with the data source to obtain and store data.

The DAO implements the access mechanism required to work with the data source. The data
source could be a persistent store like an RDBMS, an external service like a B2B exchange, a
repository like an LDAP database, or a business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets. The business component that relies on the DAO uses the
simpler interface exposed by the DAO for its clients. The DAO completely hides the data source
implementation details from its clients. Because the interface exposed by the DAO to clients does
not change when the underlying data source implementation changes, this pattern allows the
DAO to adapt to different storage schemes without affecting its clients or business components.
Essentially, the DAO acts as an adapter between the component and the data source.

The application framework will use this pattern to encapsulate all data store calls from services.

4.2.3.11 Inversion of Control (Spring Framework)

Inversion of Control or IoC is one of the techniques used to wire services or components to an
application program. By definition, IoC is “A software design pattern and set of associated

programming techniques in which the flow of control of a system is inverted in comparison to the
traditional interaction mode.” Simply stated, in IoC, instead of an application calling the

framework, it is the framework that calls the components specified by the application.

However, IoC is a broad and generic term. The aspect of IoC that the Spring Framework uses is
"Injection of required resources or dependency at Run-time into the dependent resource," which
is also known as Dependency Injection. Hence, the service provided by the IoC container of
Spring is Dependency Injection.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 27 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.3 Process View

The diagram below shows the process views from within various layers with respect to the Web
container and clients interacting with the system:

Figure 5 - Overall Process View

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 28 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.4 Deployment View

The deployment view of the ReCAP system shows the physical nodes on which the system
executes and the assignment of the system processes to the nodes. The system can be deployed
on different hardware configurations.

Figure 6 - Deployment View

 Please refer to “Size and Performance” section for more details.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 29 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.4.1 Amazon Cloud Configuration (Production Instance)

Component Name Quantity

Database

RDS - Heavy Utilization Extra Large Single AZ (15 GB of
memory, 8 ECUs (4 virtual cores with 2 ECUs each), 64-
bit platform, High I/O Capacity, Provisioned IOPS
Optimized: 1000Mbps)

2

DB Single AZ Storage (250 GB storage) 1
Provisioned IOPS 1

Web Server

EC2 - Heavy Utilization High CPU Extra Large(7 GiB of
memory, 20 EC2 Compute Units (8 virtual cores with 2.5
EC2 Compute Units each), 1690 GB of local instance
storage, 64-bit platform)

2

EBS Optimization Fee for the Extra Large Instance 2
EC2 - Heavy Utilization Standard Medium(3.75 GiB of
memory, 2 EC2 Compute Units (1 virtual core with 2 EC2
Compute Units each), 410 GB of local instance storage,
32-bit or 64-bit platform)

1

Storage EBS Storage(250 GB storage) 1
Provisioned IOPS 1

Backup Storage S3 Snapshot of EBS Volumes (500 GB storage) 1
Load Balancer Elastic Load Balancer 1

4.4.2 Amazon Cloud Configuration (QA & Development Instance)

Component Name Quantity

Database

RDS - Heavy Utilization Large Single AZ (7.5 GB memory,
4 ECUs (2 virtual cores with 2 ECUs each), 64-bit
platform, High I/O Capacity, Provisioned IOPS Optimized:
500Mbps)

1

DB Single AZ Storage (250 GB storage) 1

Web Server

EC2 - Heavy Utilization Standard Large(7.5 GiB of
memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2
Compute Units each), 850 GB of local instance storage,
64-bit platform)

1

EBS Optimization Fee for the Extra Large Instance 1
EC2 - Heavy Utilization Standard Medium(3.75 GiB of
memory, 2 EC2 Compute Units (1 virtual core with 2 EC2
Compute Units each), 410 GB of local instance storage,
32-bit or 64-bit platform)

1

Storage EBS Storage(250 GB storage) 1
Backup Storage S3 Snapshot of EBS Volumes (500 GB storage) 1

Note: EC2 Compute Unit (ECU) – One EC2 Compute Unit (ECU) provides the equivalent CPU capacity of

a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 30 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.5 Implementation View

The implementation view shown here is only a starting point and will be refined in during
development phase.

4.5.1 Layers

The layers, packages and its hierarchy are represented using the following diagrams. The
package hierarchy starts with standard Java namespace compliant structure and then is divided
into two sub-packages for the different layers viz. src – Application (Services, Data Access) and
Web Content – Presentation.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 31 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Figure 7 - Implementation View

4.5.2 Error handling

 Error handling will be implemented by leveraging the Exceptions feature of the Java language.
The following guidelines are suggested when dealing with exceptions
No. Exception Guideline Description

1 Exceptions should not create additional
package dependencies

Assume that a client class in package A
accesses a class in package B. The class in
package B should not throw an exception that
belongs to package C (which is used by
package B). This produces dependencies
between package A and C.
(This rule may not apply where Package C is a
standard and stable package, such as java.io.)

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 32 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

2 Exceptions by package. If a package’s classes throw any exceptions,

the package should have its own top-level
checked exception. The package should then
define exception subclasses for any exceptions
that may be handled differently by clients.
Good models for this paradigm can be found in
the Java packages java.io, java.sql and
javax.naming.
Sometimes a package is clearly a “sub-
package” of another package. In such a case,

the sub-package’s exceptions can extend the

parent package’s exceptions. In example of

such a sub-package is java.nio.charset (whose
exceptions extend java.io.IOException).

3 No blind catches of Exception A class is responsible for knowing what
exceptions it may encounter, and it must treat
each exception individually. If the handling of
many exceptions is identical, it could be
extracted into helper methods.

4 No empty catch-blocks At the very least, a catch-block should contain
an assertion that it should never be reached or
a comment stating that it is irrelevant

5 Write sensible throws clauses Fewer (<3) the number of exceptions thrown,
better it is. Always throw exceptions that make
sense to the calling class, if not wrap that
exception in another, which more closely
captures the error type

6 Chaining Exceptions Always chain exceptions so that the root cause
of the error is available for logging it into the
error/system log file. This is very useful for
diagnosing errors in production environment

7 Use Message Catalogs for easy
localization

Use message catalogs for message text of an
exception, whose message is directly
presented to the end user. This will help the
application to be localized or internationalized
by just adding another message catalog

Applications when encountering an exception should always log it to the Application/System log. Lower
level components should avoid writing to an error/system log.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 33 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

4.6 Data View

Figure 8 – Entity Relationship

The following table lists all the entities along with their definition:

No. Entity Description

1 Item An item record represents a physical piece in the
library

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 34 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

2 Bib A bibliographic record is an entry being a uniform
representation and description of a specific content
item in a bibliographic database (or a library
catalog), containing data elements required for its
identification and retrieval, as well as additional
supporting information, presented in a formalized
bibliographic format

3 Location Entity that contains list of valid delivery locations
4 Partner List of names and contacts of the ReCAP partners
7 Request Entity that contains all the details for every single

request received by ReCAP middleware.
8 Status Entity that contains details of all the statuses

applicable for items in ReCAP middleware
9 RequestStatus Entity that contains details and timelines of all

statuses associated to a ReCAP request.
10 RequestHistory Archive Entity for completed Request (without any

patron information).
11 RequestStatusHistory Archive table for RequestStatus entity.
12 CirculationCode Entity that contains details about various types of

circulation policies for shared collection items
13 Restriction Entity that contains details about policy restrictions

for shared collection items

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 35 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

5. Size and Performance

5.1 Scalability

This section explains how the architecture aims to achieve scalability.

Figure 9 - Scalability

The figure above presents how the architecture aims to be scalable. There are several elements
that contribute to scalability:

 Network or HTTP load balancers – These appliances or devices would perform load

balancing of HTTP and other protocol specific servers. The actual mechanism of load
balancing will depend upon specific device and could include mechanisms like round robin,
cookie sniffing etc. In a web environment, the load balancers will balance the load between
web servers. The web server maintains state (user specific). This typically means that once a
session is established, a user is redirected to the same web server. Relatively inexpensive
servers (nodes) could be used for the web servers. Redundant servers could be used to
provide high-availability.

 Web Server Cluster – The Web server cluster appears to the client application (Browser or
Service Client) as a single server. The Web server provides clustering capability. Although
session state could be replicated, it could result in performance hits. The architecture

presents design using sticky sessions to provide high availability and fault tolerance without
compromising performance. The Web server cluster scales by adding more nodes to the
cluster. The applications will need no change when the cluster scales. Again, relatively
inexpensive servers could be used to enable linear scaling.

 RDBMS cluster – The RDBMS servers will be clustered to provide scalability. The RDBMS
cluster appears as a single server to the user of the database. The RDBMS product takes
care of data replication and clustering challenges.

 Solr Cloud – Solr Cloud creates a cluster of Solr servers representing two different shards of
a collection (complete index). While shards provide distributive scaling, shard replication
provides fault tolerance. Zookeeper takes care of data replication and clustering challenges.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 36 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

5.2 Performance

This section presents how the architecture addresses performance related issues.

This section presents various design patterns used to achieve performance.

Basic performance metrics are latency and throughput. Latency is measured as the time elapsed
between request and response and throughput as the number of requests handler per second. In
an ideal world, the latency should not increase and throughput should scale linearly as the load
increases.

Performance related issues needs to be investigated at various points of the architecture. Some
common elements that should be subjected to performance tuning are:

 Middleware – Middleware technologies like ESB or other distributed technologies are primary

candidates for performance tuning as issues like network round-trips and network latency could
become critical.

 Database – Database access and processes like joins and sorts are candidates for
performance tuning.

 Search Engine – Solr caching is an candidate to improve search performance by leveraging
cached queries and results

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 37 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

6. Proposed Development Environment

6.1 Hardware

The core technology will be Java and an implementation of a servlet container. MySQL will be
the relational data store and apache SOLR will be the search engine. Application development
environment will be hosted in Amazon cloud on Linux. Each developer will have his or her own
development setup on PC or Mac and access source code that is stored in a common source
control repository such as SVN or CVS.

It is assumed that Partners (NYPL, Princeton and Columbia) will be hosting the development, QA
and production environments of NCIP Responders and GFA LAS.

6.2 Software

No. Name Purpose

1 Eclipse Juno 4.2

Eclipse is a multi-language software development environment
comprising a base workspace(Eclipse Public License (EPL))

2 MySQL 5.6 Open source relational database management system (RDBMS)
that runs as a server providing multi-user access to a number of
databases (GNU General Public License)

3 Tomcat 7.0 Apache Tomcat is an open source web server which provides
pure Java HTTP web server environment for Java code to run.
(Apache License)

4 Kuali RICE 2.2.3 Kuali RICE comprises of a suite of middleware programs
(workflow, messaging, identity management), interfaces and Web
services around a service bus (Educational Community License)

5 Apache SOLR 4.2.1 SOLR is an open source enterprise search platform written in
Java and runs as a standalone full-text search server within a
servlet container.(Apache License)

6 Apache Quartz 2.1.7 Quartz is a full-featured, open source job scheduling service that
can be integrated with, or used alongside virtually any Java
application (Apache License)

7 ProFTPD 1.3.5rc2 ProFTPD is an secured FTP server exposing a large
configuration options to the user(GNU General Public License)

8 Jenkins 1.511 Jenkins is a server-based system running in a servlet container
providing open source continuous integration features.(
Massachusetts Institute of Technology (MIT) License)

9 JUnit 4 JUnit is a unit testing framework for the Java Programming
language (Common Public License)

10 SOAP UI 4.5.1 SoapUI is an open source web service testing application for
service-oriented architectures (SOA) and provides functionalities
like web service inspection, invoking, development, simulation
and mocking, functional testing, load and compliance testing
(GNU Lesser General Public License (LGPL))

11 Maven 3.0.5 Maven is a build automation tool used primarily for Java projects
(Apache License)

12 Java Platforms
(Java 7)

Java is a set of several computer software products and
specifications that together provide a system for developing
application software and deploying it in a cross-platform

http://en.wikipedia.org/wiki/Java_Servlet#Servlet_containers
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Mock_object
http://en.wikipedia.org/wiki/Build_automation
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Cross-platform

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 38 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

computing environment (Freeware)
13 Selenium IDE

(1.10.0)
Selenium is a portable software testing framework which provides
record/playback tool for authoring tests. (Apache License)

14 Motorola Scanner
SDK

A framework providing a single programming interface across
multiple programming languages and across multiple system
environments for all Motorola scanners

15 Java Swing Swing is the primary Java GUI widget toolkit developed to
provide a more sophisticated set of GUI components

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Widget_toolkit
http://en.wikipedia.org/wiki/Software_component

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 39 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

7. Prototype/Proof-of-Concepts

The proposed architecture is based on proven industry standard components, hence no specific
prototype or proof-of-concept developed. core technology will be Java and an implementation of a
servlet container.

8. Quality

Extensibility: The proposed architecture is based on Components adhering to well-defined
interfaces and industry based standards (J2EE), so adding new features and implementing new
components will not require extensive rework of existing components.

Reliability: The architecture uses standard J2EE architecture and will have the capabilities of
Load balancing. Fail-over mechanisms will improve the reliability of the system.

Portability: The Enterprise Service Layer abstracts the platform and protocol specific
implementation of common services into a generic set of interfaces. Clients use these interfaces
to access the services are not tied to protocol/platform. It will be possible to port applications to
different protocols/platforms by implementing the Generic set of interfaces on the client
protocol/platform.

By complying with J2EE standards, it will be possible to port the application to multiple server
vendors.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 40 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Appendix A Glossary

No. Term Description

1. ReCAP Research Collections and Preservation Consortium (ReCAP) is
a storage facility for all the shared collection items.

2. UML Unified Modeling Language (UML) is a standardized, general-
purpose modeling language in the field of software engineering

3. GFA LAS Generation Fifth Applications - Library Archive System is an
inventory management system from Generation Fifth
Applications which catalogs and controls archival storage of
shared collection items in the ReCAP facility.

4. Patrons

Users of the System who place a request for a shared
collection item/items.

5. ReCAP Middleware

The central component of this architecture which handles
search, discover, request processing, reporting and collection
management for a shared collection item by interacting with
other components in the system.

6. Shared collection
items

Any item stored in the ReCAP facility which can be requested
by any of the partners.

7. Institution items

Any item stored in the ReCAP facility which can be requested
only by the owning partner.

8. Refiling

Refiling is a process of re-shelving the item in the ReCAP
facility.

9. Item Records An item record represents a physical piece in the library

10. Bib Records A bibliographic record is an entry being a uniform
representation and description of a specific content item in a
bibliographic database (or a library catalog), containing data
elements required for its identification and retrieval, as well as
additional supporting information, presented in a formalized
bibliographic format

11. Federated Search

Federated search is an information retrieval technology that
allows the simultaneous search of multiple searchable
resources

12. SOA

Service-oriented architecture (SOA) is a flexible set of design
principles used during the phases of systems development and
integration

13. Temporary item
record

An item record which is created in any of the partners ILS which
is temporary in nature and requires deletion in the near future

14. Circulation policies Rules related to circulation of any given item to a patron

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 41 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

15. Hold

To place a hold on an item means to reserve it. An item that is
checked out may have a hold placed on it by another patron
who wishes to use it. When the item is returned, the library will
contact the patron who is waiting so they may come in and
check it out.

16. Recall

Recall is a special type of request by a library to a borrower for
the return of a borrowed item before the due date.

17. Owning institution

Any institution which borrows an item which belongs to itself is
called an owning institution.

18. Borrowing institution

Any institution which borrows an item which belongs to other
partners is called an borrowing institution.

19. Accession

The process of recording an item and its location in the ReCAP
facility into the GFA LAS system.

20. Barcodes A barcode is an optical machine-readable representation of
data relating to the object to which it is attached. Every item
such as books or films and location such as aisle, shelf, and bin
has a unique barcode.

21. Circulation code

A unique identifier for every item which dictates its circulation
policy.

22. Collection Code A code which is assigned to determine the scope of the sharing
of an item.

23. Customer Code A unique identifier which is currently used in GFA to identify a
group to which an item belongs.

24. Staff interfaces User Interface screens for Library staff

25. Borrow Direct

Borrow Direct is an interlibrary borrowing service offered by all
of the Ivy League Universities except Harvard.

26. Source Control
Repositories

It’s a space set aside to maintain code base for the ReCAP

middleware project.

27. SVN(Apache
Subversion)

It’s a type of Source control repository.

28. CVS(Concurrent
Version System)

It’s a type of Source control repository.

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 42 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

29. NCIP Responders

National Information Standards Organization Circulation
Interchange Protocol (NCIP) is a protocol that is limited to the
exchange of messages between and among computer-based
applications to enable them to perform functions necessary to
lend and borrow items, to provide controlled access to
electronic resources, and to facilitate cooperative management
of these functions. It’s a mechanism by which ReCAP

middleware communicates with any of the ILS which belongs to
the participating institutions.

30. Fault tolerance

Fault-tolerant describes a computer system or component
designed so that, in the event that a component fails, a backup
component or procedure can immediately take its place with no
loss of service.

31. Cluster

A cluster is a group of servers and other resources that act like
a single system and enable high availability and, in some
cases, load balancing and parallel processing.

32. Shard

A shard is a term which is used in SolrCloud a feature in
Apache SOLR which enables high fault tolerance
of SolrCores.

33. Load Balancer

Load Balancer achieves high fault tolerance by distributing
incoming requests across one or more web servers.

34. Deaccession

It is a process of withdrawing an item from ReCAP facility

35. RDS Amazon Relational Database Service (Amazon RDS) is a web
service that makes it easy to set up, operate, and scale a
relational database in the cloud

36. AZ Multi-AZ deployment is for enhanced data durability and
availability

37. IOPS The ability which Amazon provides to specify or provision the
I/O capacity needs is called IOPS.

38. EC2 Amazon Elastic Compute Cloud (Amazon EC2) is a web
service that provides resizable compute capacity in the cloud

39. EBS Amazon Elastic Block Store (EBS) provides block level storage
volumes for use with Amazon EC2 instances

40. Elastic Load
Balancing

Elastic Load Balancing automatically distributes incoming
application traffic across multiple Amazon EC2 instances

41. S3 Amazon S3 is storage for the Internet. Amazon S3 provides a
simple web services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the
web

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 43 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Appendix B References

 No. Reference Author

1. ReCAP Technology Report.doc Marshall Breeding

2. ReCAP Grant Overview.doc ReCAP Team

3. ReCAP Technology Workshop.ppt Marshall Breeding

4. ReCAP Shared Collection Policies.doc Lizanne Payne

5. ReCAP Workflows.doc HTC Team

6. R ReCAP NCIP.doc HTC Team

7. ReCAP Library Archival System API
Requirements.doc

HTC Team

ReCAP Project 1.0

High Level Architecture Owner: ReCAP

Author: HTC Global Services

Revision 1.0 ReCAP Proprietary Page 44 of 44
Use or disclosure of the data or information on this page is restricted by the statement of confidentiality set forth on the second page of this document.

Appendix C Naming and Coding Standards

Project will adopt the following industry standard naming and coding standards:

Code Conventions for the Java TM Programming Language

Guidelines, Patterns, and code for end-to-end Java applications

J2EE Patterns Catalog

http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/namingconventions-139351.html
http://www.oracle.com/technetwork/java/catalog-137601.html

